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Abstract−−−−The sensitivity and stability by frequency response of the final filament to several sinusoidal disturbances
have been investigated in viscoelastic spinning by using various novel numerical algorithms. Amplitudes, or gains of
the spinline cross-sectional area at the take-up, show resonant peaks, which are frequently encountered in hyperbolic
systems. To effectively solve the complex system of the frequency response equation, alternative ways have been
performed and compared. Interestingly, in the one-dimensional systems considered, integrating the linearized equations
over the spinline length to shoot at the take-up boundary condition using two initial guesses (“two-shot” method) proved
far more efficient than modal analysis using eigenfunction data or solving the matrix problem from the entire length by
a direct method or an iterative one (GMRES). Also, the methodology to determine the stability of the system by using
frequency response data, as suggested in Kase and Araki [1982], has been revamped to viscoelastic spinning system.

Key words: Frequency Response, Sensitivity, Stability, Viscoelastic Spinning, Modal Analysis, Iterative Method (GMRES),
Two-shot Method, Direct Method

INTRODUCTION

In polymer processes such as fiber spinning, film casting, and
tubular film blowing, manufacturing uniform and thin products (e.g.,
fibers or films) is not a trivial task at a high-speed operation. This
is primarily caused by the extensional flow with free surfaces, which
is very susceptible to many kinds of unexpected disturbances that
affect the uniformity of fibers or films. Therefore, many efforts to
explore the stability and sensitivity issues in these processes, closely
related to productivity/profitability of the final products, have been
increasing in academia and industry. Stability issues, especially fo-
cused on a self-sustained periodic oscillatory instability called as
“draw resonance,” have been scrutinized by many researchers dur-
ing the last four decades [Pearson and Matovich, 1969; Gelder, 1972;
Kase, 1974; Fisher and Denn, 1976; Hyun, 1978; Liu and Beris,
1988; Petrie, 1988; Larson, 1992; Kim et al., 1996; Jung et al., 1999a,
2000, etc].

Also, sensitivity issues about the propagation of disturbances,
which influences the uniformity of fibers or films have been recent-
ly attractive [Kase and Araki, 1982; Devereux and Denn, 1994; Jung
et al., 1999b, 2002; Lee et al., 2001, 2003a]. Sensitivity of the sys-
tem to disturbances is generally analyzed by frequency response
method, measuring the sinusoidal output of the linearized system
subjected to small ongoing sinusoidal inputs or disturbances [De-
vereux and Denn, 1994; Park et al., 2001; Jung et al., 2002; Lee et
al., 2003a, b]. Most information about the linear dynamical behav-
ior, including the amplitude or gain, and the phase angle in Bode
plots, can be drawn from this analysis. Kase and Araki [1982] de-
signed Newtonian spinning as a feedback loop controlled by a spin-
line tension and examined the sensitivity and stability of their sys-
tem from the transfer function data between disturbances and state
variables after directly solving linearized transient governing equa-

tions. Also, other endeavors to investigate the sensitivity of the 
tem have been performed by Jung et al. [1999b] and Lee et al. [2
using tension sensitivity analysis. The above literature consiste
emphasized that the spinline tension acting on a spinline bec
the key link in relaying disturbances to the draw resonance in
bility.

This study has focused on the frequency response method
hibited by Jung et al. [2002] to investigate the stability as well
the sensitivity of viscoelastic spinning to any sinusoidal disturban
Especially, to seek an effective algorithm for solving complex f
quency response equations, several novel numerical schemes
been suggested and compared. Also, the stability of a viscoel
spinning has been efficiently expected from the Nyquist plot of f
quency response data, by revamping the feedback loop conce
Kase and Araki [1982].

GOVERNING EQUATIONS FOR SPINNING FLOWS

Dimensionless governing equations of the isothermal spinn
with PTT fluid model are as follows [Jung et al., 2002]. PTT mod
is well known for its robustness and accuracy in portraying ext
sional deformation processes for both extensional thickening and
tensional thinning fluids [Khan and Larson, 1987; Kwon and Leon
1995].

Continuity equation:

(1)
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Equation of motion:
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where 

Constitutive equation: PTT fluids

(3)

where 

(Notations appearing here are given in the Nomenclature.)
These dimensionless equations are subject to the following bound-

ary conditions:

a=a0=1, v=v0=1, τ=τ0 at x=0 for all t (4)

v=vL=r at x=1 for all t (5)

In the above equations, several assumptions have been incorpo-
rated in order to simplify the model and to focus on the extensional
deformation which constitutes dominant dynamics in spinning. First,
the thin filament approximation simplifies this system to a one-di-
mensional model. Second, the origin of the spinning distance coor-
dinate is chosen at the die (extrudate) swell position, meaning all
the pre-spinneret deformation history of the liquid is not included
in the model. Third, inertial and rheological forces are more domi-
nant than other secondary forces.

FREQUENCY RESPONSE METHOD

Frequency response represents the sensitivity of the linearized
system by inspecting the amplitudes of output variables to ongoing
sinusoidal perturbations around a base flow. For convenience, above
nonlinear governing equations [Eqs. (1)-(3)] are compactly reduced
to the following simple vector form:

(6)

where is the solution vector of spinline cross-section, spinline
velocity, and axial stress,  time derivative of , and p any
parameter to be perturbed. Then, introducing small perturbation
and linearizing Eq. (6) around the steady state ( =s) leads to a
transient linearized equation set:

(7)

where  is Jacobian matrix at the steady state, 
 mass matrix, and  forcing vector of the

residuals to the parameter p evaluated at steady state.
A particular solution of Eq. (7) responds to a steady oscillation

with the same frequency as a sinusoidal disturbance (i.e., ∆p=ζexp
(iωt)) as follows:

(8)

where ω is the frequency of the ongoing disturbance, ζ the com-
plex value of the amplitude of the imposed disturbance, i= , 
the complex value representing the amplitude and phase lag of solu-
tions relative to the imposed disturbance.

Substituting Eq. (8) into Eq. (7) leads to the linear complex equa-
tion

Amplitude or gain, Gi, and phase angle, θi of a state variable i, can
be determined from the complex response of Eq. (9). (But, the p
lag is not examined in this study.)

(10)

Some possible ways to solve the complex linear system, Eq.
are described in the next sections. 
1. Direct Method for Complex System

Eq. (9) can be directly solved from the following “doubled” m
trix. To avoid complex arithmetic, the complex system is doub
with real and imaginary parts of the solution vector, 

(11)

where Re( ) and Im( ) are the real and imaginary parts of the
lution vector, . An LU decomposition of the doubled system
used at each frequency.
2. Integrating over the Spinline Length (Two-shot Method)

Doubled linear Eq. (11), comprising real and imaginary parts s
arately, can be successively integrated along the spinline length b
ing only two initial guesses (in this case, two perturbed initial stres
at the spinneret) to shoot at the take-up boundary conditions. 
to the linearity of the system, the desired initial guess at each
quency is found by linear interpolation of two initial guesses wi
out further iterations and then, the amplitude of spinline cross-
tional area at the take-up at each frequency can be easily obta
The 4th-order Runge-Kutta method is used in this study as an
tial boundary problem with shooting technique. It is, however, no
that using this method may be limited to one-dimensional syste
Other powerful techniques to surpass the direct method can b
quired for complicated multi-dimensional systems.
3. Modal Analysis

An alternative to directly solving Eq. (9) is to decompose the co
plex system into its independent dynamical normal modes u
left/right eigenvectors of the system together with the correspo
ing eigenvalues evaluated from the linear stability analysis. T
method is well known to modal analysis in the fields of vibrati
and structural engineering [Wahed and Bishop, 1976; Fawzy 
Bishop, 1977; Claeyssen, 1990]. Chen [1992] first explored the
plication of modal analysis in the coating flow system. It has b
suggested from his results that modal analysis is a very attra
alternative when stability has already been analyzed, because a
system can be effectively reduced by only a small number of
leading eigenmodes. A brief description of modal analysis follow

Modal analysis finds the complex response of the inverse of
complex matrix,  as a linear combination of the matr
products of the right and left eigenvectors, by using the well kno
spectral decomposition theorem [Saad, 1992]. So the respon
constructed as follows:

(12)

where  and  are the normalized right and left eigenvectors 
responding to same eigenvalue, λj, and N is the size of  or  ma-
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The total response of  can be divided into two contributions: kp

the principal response from the leading modes from 1 to Np, and

B the response from remaining modes from Np+1 to N, so-called,
“background” response.

(13)

In general, B is very small compared to p, so the total response is
approximated to the response by the leading modes. However, a
background term has been also considered here by simply approxi-
mating at zero frequency [Eq. (14)].

(14)

where .
4. Iterative Method (GMRES)

As in the case of the direct method, the doubled matrix to solve
the linear system is also considered here. 

(15)

The iterative method constructs the response on a m-th Krylov sub-
space of the doubled matrix, , defined by

(16)

where 1= 0/|| 0||2, 0= − 0, and 0 is the initial guess of the so-
lution. This method approximates the response as a linear combi-
nation of basis vectors that span the Krylov subspace.

As a useful one among the iterative methods, the generalized min-
imal residual method (GMRES) developed by Saad and Schultz
[1986] is implemented to solve the doubled linear system. The solu-
tion is expressed as a linear combination of the Krylov subspace
basis vectors,

(17)

where  is a vector of size m, the Krylov subspace dimension. This
method minimizes the residual norm over all vectors in Eq. (17).
Residual ( ) of Eq. (15) can be expressed into the follow-
ing form, combined with Eqs. (16) and (17)

(18)

where , i is unit vector, and  the (m+1)×m augmented
Hessenberg matrix. Since the column vectors of m+1 are orthogo-
nal, then GMRES algorithm seeks  to minimize . (A
more detailed algorithm of this method is well described in Saad
[1996].) Also, the performance of this method is effectively improved
with a pre-conditioning step [Gates, 1999].

RESULTS AND DISCUSSION

1. Sensitivity Results
Frequency response of the spinline cross-sectional area at take-

up to several ongoing disturbances was evaluated by several algo-
rithms outlined above. Nodal points (np) by finite difference along
the whole spinline are 401, guaranteeing acceptable accuracy. More
detailed explanations about sensitivity results of PTT viscoelastic

fluids are presented in Jung et al. [2002]. Some of the interes
results are introduced here, because the main focus of this s
develops useful numerical methods for solving frequency respo
and determines the stability of the system by using these frequ
data.

Fig. 1 shows predicted amplitudes or gains of the spinline cro
sectional area at the take-up as a function of the frequency to 
soidal perturbations in spinneret cross-sectional area, take-up v
ity, and extrusion velocity. In all cases, amplitudes of the solut
give unity value in the low-frequency region, because the sinu
dal change of flow rate directly alters the final spinline cross-s
tional area. In contrast, the change of other disturbances, not i
encing the flow rate, such as viscosity, elasticity, and cooling c
ditions, results in almost zero amplitude at the low-frequency reg
[Jung et al., 2002].

One interesting thing is that the changes in sensitivity, i.e., a
plitudes from frequency response, are well connected to som
formation from linear stability analysis. Amplitudes shown in Fig
have resonant peaks along the frequency domain, closely relat
the wave characteristics of the hyperbolic systems [Friedly, 19
In this case, frequencies at resonance peaks are exactly the sa
the imaginary parts of successive leading eigenmodes from li
stability analysis.

Process sensitivity is directly scrutinized with the amplitude i.
The more sensitive a process is, the higher the peaks of amp
to sinusoidal disturbances. Therefore, it is possible to systematic
analyze the effect of several process conditions such as coo
viscoelasticity, inertial force, etc. on the sensitivity of the syst
[Jung et al., 2002].
2. Comparison of the Performance of Several Numerical Al-
gorithms

k
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Fig. 1. Amplitudes of spinline cross-sectional area at the take-up
for isothermal PTT spinning where various disturbances
are introduced in 1: spinneret area, 2: take-up velocity, 3:
extrusion velocity.
January, 2004
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Direct solving the full doubled matrix of Eq. (11) as a direct meth-
od will be tedious and time-consuming if unknowns or nodal points
along the spinline are enormously increased. More efficient numeri-
cal techniques should be devised to solve the large-sized frequency
response equations. It has been found that the two-shot method, which
solves the frequency response of our one-dimensional system by
integrating the linearized equations over the spinline length with
only two initial guesses, is superior to all other methods considered
here. The performance of each method is presented in Table 1 and
explained later.

Fig. 2 portrays the frequency response results by modal analysis
in Newtonian spinning. Over 0.45 N principal leading modes are
required to closely agree with the exact solution. Interestingly, even

with the small number of leading modes the first peak or the m
dangerous one can be exactly predicted. Solving by this metho
much faster than the direct method, because a leading part o
eigenmodes (N) are only used. The response by this method m
depend on the forcing term as well as the number of leading mo

The results in Newtonian spinning by iterative method (prec
ditioned GMRES) show that the frequency response is well e
mated with around 50 Krylov subspace dimensions, bringing fo
faster computation time than the direct method (Fig. 3). Also, 
most dangerous peak in the low frequency region has been ex
obtained with only a small number of Krylov subspace dimensio
as mentioned in the case of modal analysis.

Table 1 compares the performance of the direct method, t
shot method, modal analysis, and iterative method at only two
quencies, ω=28 and 80, respectively. The time needed by the dir
method is virtually the same at all frequencies. The two-shot m
od is the fastest among all methods, just requiring a few secon
draw the whole frequency response of the spinline cross-sect
area at the take-up. The performance of the modal analysis 
fast computation time is comparable to the two-shot method. 
computation time for extracting the leading left/right eigenvect
from all eigenmodes and calculating the frequency response o
spinline cross-sectional area at the take-up only is recorded in T
1 (In other words, computation time for obtaining the eigenmo
from linear stability analysis is not included. There is no need
calculate eigenmodes at every frequency, because these are
data before starting the frequency response calculation.). In the
ative method, the total time includes the time spent on the pre
ditioning operation in addition to the GMRES algorithm. This me
od also needs shorter computation time than the direct method
cause the preconditioning step is only conducted before starting

Table 1. The performance test of the direct, two-shot, modal,
and iterative methods

Methods

Computation
time (s)

Residuals
||(iω − ) − ||2

ω=28 ω=80 ω=28 ω=80

Direct 132 132 9.59×10−8 8.18×10−8

Two-shot <1 <1

Modal: Np=0.05 N 1-2 1-2 1.03 10.38

0.2 N 1.04 9.77
0.35 N 0.52 9.46
0.45 N 0.13 1.02
0.55 N 1.34×10−7 8.78×10−8

Iterative: m=5 50 51 17.87 500.84
20 65 73 8.85×10−9 31.99
40 60 83 6.08×10−9 1.41
50 65 92 5.40×10−9 7.63×10−9

M J k F

Fig. 2. The effect of the number of the leading modes (Np) on the
sensitivity in the modal analysis when a disturbance is intro-

Fig. 3. The effect of the Krylov subspace dimension (m) on the sen
sitivity in the iterative method (GMRES) when a distur-
bance is introduced at the take-up velocity (De=0, Cin=0.05,
and r=25).
Korean J. Chem. Eng.(Vol. 21, No. 1)

frequency response calculation, actual computation time at everyduced at the take-up velocity (De=0, Cin=0.05, and r=25).
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frequency is shorter than that given in Table 1.
From the performance test among the methods considered in this

study, it has been confirmed that the two-shot method is best suited
to solve the frequency response of one-dimensional systems such
as spinning, film casting process, and simplified curtain coating flow
[Jung and Scriven, 2001]. (Performance: Two shot>modal analysis>
iterative method>direct method.) Also, modal analysis and itera-
tive method are more powerful tools than direct method. In partic-
ular, using these two methods will be notably favorable in multi-
dimensional systems with large sparse matrix, as demonstrated in

Gates [1999].
3. Stability Results by Frequency Response

As suggested in Kase and Araki [1982], frequency response
been evidently applied to determine the stability of a simple Ne
tonian spinning system. They devised the spinning system as a 
back loop controlled by the spinline tension acting on the spin
(Fig. 6 in their article) and derived the transfer function equat
relating the cross-sectional area at the take-up to any disturba
It has been demonstrated that the spinning system is unstable 
the vector locus of the transfer function, Gv,F, connecting spinline
tension and take-up velocity, “encircles” the origin of the comp
plane in Nyquist plot. The above stability criterion has been exten
to the viscoelastic system of our study. Furthermore, our metho
much simpler and faster than Kase’s in that we applied one of
frequency response methods suggested here (i.e., two-shot m
for this study) to obtain the transfer function, Gv, F, whereas they
used the transient numerical simulation. Fig. 4 shows Gv,F loci for
determining the stability of a PTT spinning system. The stable 
unstable conditions have been exactly expected by inspecting w
er the vector locus of Gv,F includes the origin of the complex plan
or not. Whole stability windows can be drawn from this method
shown in Fig. 5, giving the same results as those by the linear
bility theory.

CONCLUSION

The sensitivity and stability of the viscoelastic spinning syste
to several sinusoidal disturbances have been investigated by u
the frequency response method. Due to the hyperbolic charac
tics of the system, amplitudes of the spinline cross-sectional are
the take-up show resonant peaks along the whole frequency do
where the frequencies at local maxima of amplitudes are equ
the imaginary parts of the leading eigenmodes. To effectively so

Fig. 4. Vector loci of transfer function between spinline tension and
take-up velocity of a PTT liquid in (a) low drawdown ratio
and (b) high drawdown ratio regions.

Fig. 5. Neutral stability curves of PTT fluids in isothermal spin-
ning.
January, 2004
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the frequency response equation system, alternative methods have
been developed and compared. Interestingly, in the cases examined,
the two-shot method proved far more efficient than modal analysis us-
ing the eigenfunctions or solving the matrix problem from the entire
spinline length by a direct method or an iterative method (GMRES).
The two-shot method can also be implemented to analyze the sen-
sitivity of other one-dimensional systems such as sheet casting and
simplified curtain coating. Modal analysis and iterative method are
also attractive tools in solving the frequency response, especially
for multi-dimensional systems with large sparse matrix. Also, the
stability of the system using frequency response data is success-
fully determined by revamping the stability criterion from the feed-
back control system, as devised in Kase and Araki [1982].
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NOMENCLATURE

A : spinline cross-sectional area
a : dimensionless spinline cross-sectional area
Cin : coefficient representing the inertia force 
De : Deborah number

: forcing vector

i : amplitudes or gains of state variable i to the imposed dis-
turbance

m : (m+1)×m augmented Hessenberg matrix
: Jacobian matrix
: complex value representing the amplitude and phase lag of
solutions relative to the imposed disturbance

L : spinning distance between the spinneret and the take-up
: mass matrix

m : Krylov subspace dimension
N : matrix size of  and 
np : number of mesh points in the discretized spinning distance

coordinate
: solution vector of state variables

r : draw-down ratio
: time

t : dimensionless time
V : spinline velocity
v : dimensionless spinline velocity

: distance from the spinneret
x : dimensionless distance from the spinneret

 : solution vector of state variables

Greek Letters
ε : material parameter of PTT fluids

: normalized right eigenvector
η0 : liquid viscosity at zero strain-rate

ρ : liquid density
σ : spinline axial stress
τ : dimensionless spinline axial stress
ω : frequency
ξ : material parameter of PTT fluids

: normalized left eigenvector
ζ : complex value of the amplitude of the imposed disturban

Subscripts
0 : values at the spinneret
L : values at the take-up
s : values at steady state
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