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Abstract—The sensitivity and stability by frequency response of the final flament to several sinusoidal disturbances
have been investigated in viscoelastic spinning by using various novel numerical algorithms. Amplitudes, or gains of
the spinline cross-sectional area at the take-up, show resonant peaks, which are frequently encountered in hyperbolic
systems. To effectively solve the complex system of the frequency response equation, alternative ways have been
performed and compared. Interestingly, in the one-dimensional systems considered, integrating the linearized equations
over the spinline length to shoot at the take-up boundary condition using two initial guesses (“two-shot” method) proved
far more efficient than modal analysis using eigenfunction data or solving the matrix problem from the entire length by
a direct method or an iterative one (GMRES). Also, the methodology to determine the stability of the system by using
frequency response data, as suggested in Kase and Araki [1982], has been revamped to viscoelastic spinning system.
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INTRODUCTION tions. Also, other endeavors to investigate the sensitivity of the sys-
tem have been performed by Jung et al. [1999b] and Lee et al. [2001]
In polymer processes such as fiber spinning, film casting, andising tension sensitivity analysis. The above literature consistently
tubular film blowing, manufacturing uniform and thin products (e.g., emphasized that the spinline tension acting on a spinline became
fibers or films) is not a trivial task at a high-speed operation. Thisthe key link in relaying disturbances to the draw resonance insta-
is primarily caused by the extensional flow with free surfaces, whichbility.
is very susceptible to many kinds of unexpected disturbances that This study has focused on the frequency response method ex-
affect the uniformity of fibers or films. Therefore, many efforts to hibited by Jung et al. [2002] to investigate the stability as well as
explore the stability and sensitivity issues in these processes, closdllge sensitivity of viscoelastic spinning to any sinusoidal disturbances.
related to productivity/profitability of the final products, have been Especially, to seek an effective algorithm for solving complex fre-
increasing in academia and industry. Stability issues, especially foguency response equations, several novel numerical schemes have
cused on a self-sustained periodic oscillatory instability called aseen suggested and compared. Also, the stability of a viscoelastic
“draw resonance,” have been scrutinized by many researchers duspinning has been efficiently expected from the Nyquist plot of fre-
ing the last four decades [Pearson and Matovich, 1969; Gelder, 1978uency response data, by revamping the feedback loop concept of
Kase, 1974; Fisher and Denn, 1976; Hyun, 1978; Liu and BerisKase and Araki [1982].
1988; Petrie, 1988; Larson, 1992; Kim et al., 1996; Jung et al., 1999a,
2000, efc]. GOVERNING EQUATIONS FOR SPINNING FLOWS
Also, sensitivity issues about the propagation of disturbances,
which influences the uniformity of fibers or fims have been recent- Dimensionless governing equations of the isothermal spinning
ly attractive [Kase and Araki, 1982; Devereux and Denn, 1994; Jungvith PTT fluid model are as follows [Jung et al., 2002]. PTT model
et al., 1999h, 2002; Lee et al., 2001, 2003a]. Sensitivity of the sysis well known for its robustness and accuracy in portraying exten-
tem to disturbances is generally analyzed by frequency respongonal deformation processes for both extensional thickening and ex-
method, measuring the sinusoidal output of the linearized systertensional thinning fluids [Khan and Larson, 1987; Kwon and Leonov,
subjected to small ongoing sinusoidal inputs or disturbances [De1995].
vereux and Denn, 1994; Park et al., 2001; Jung et al., 2002; Lee et
al., 2003a, b]. Most information about the linear dynamical behav-
ior, including the amplitude or gain, and the phase angle in Bode a o
plots, can be drawn from this analysis. Kase and Araki [1982] de- ¢ +&(av) =0 @
sighed Newtonian spinning as a feedback loop controlled by a spin- AV F %
line tension and examined the sensitivity and stability of their sys- WhefeaEE,VE\Z,tET,XE[
tem from the transfer function data between disturbances and state
variables after directly solving linearized transient governing equa- Equation of motion:

Continuity equation:
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oL c PVl Amplitude or gain, Gand phase anglé,of a state variable i, can
2nVo' " 20, be determined from the complex response of Eq. (9). (But, the phase
lag is not examined in this study.)

wheret=

Constitutive equation: PTT fluids

ovp_ov G =[(Re(k)" +(Im(k))’, 4 =tan" ok (10)

0 ax 3) Re(k)

Some possible ways to solve the complex linear system, Eq. (9),
are described in the next sections.

1. Direct Method for Complex System

Eq. (9) can be directly solved from the following “doubled” ma-
X. To avoid complex arithmetic, the complex system is doubled

+De@7 +,9T 51—
Kt De[Bt Vax 2(1-4)1

whereK =exp(2¢Der), Dez/%’

(Notations appearing here are given in the Nomenclature.)
These dimensionless equations are subject to the following bouani

ary conditions: with real and imaginary parts of the solution vedtor,
a=a=1, v=y=1, =7, at x=0 for all t @ . - —_—
-J ~wM—=Re(K)=_=F
v=v,=r at x=1 for all t (5) %wl\;l -3 %Im ) %— %6 % (1)

In the above equations, several assumptions have been incorpo- ] )
rated in order to simplify the model and to focus on the extensionayVhere R&K ) and Irk( ) are the real and imaginary parts of the so-
deformation which constitutes dominant dynamics in spinning. FirstUtion vector.k . An LU decomposition of the doubled system is
the thin filament approximation simplifies this system to a one-di- Used ateach frequency.
mensional model. Second, the origin of the spinning distance coor- INtégrating over the Spinline Length (Two-shot Method)
dinate is chosen at the die (extrudate) swell position, meaning all Poubled linear Eq. (11), comprising real and imaginary parts sep-
the pre-spinneret deformation history of the liquid is not included@rately, can be successively integrated along the spiniine length by us-
in the model. Third, inertial and rheological forces are more domi-Ng Only two initial guesses (in this case, two perturbed initial stresses

nant than other secondary forces. at the spinneret) to shoot at the take-up boundary conditions. Due
to the linearity of the system, the desired initial guess at each fre-
FREQUENCY RESPONSE METHOD quency is found by linear interpolation of two initial guesses with-

out further iterations and then, the amplitude of spinline cross-sec-

Frequency response represents the sensitivity of the linearizefiPn@ area at the take-up at each frequency can be easily obtained.
system by inspecting the amplitudes of output variables to ongoing "€ 4th-order Runge-Kutta method is used in this study as an ini-
sinusoidal perturbations around a base flow. For convenience, abovid! boundary problem with shooting technique. It is, however, noted
nonlinear governing equations [Egs. (1)-(3)] are compactly reducedhat using this method may be limited to one-dimensional systems.

to the following simple vector form: Other powerful techniques to surpass the direct method can be re-
quired for complicated multi-dimensional systems.
R(g.4p) =0 (6) 3. Modal Analysis

where q is the solution vector of spinline cross-section, spinline An alternanye tq d|r'ectly solving Eg. (9) IS to decompose the com-
velocity, and axial stressj  time derivative qf and p any plex system into its independent dynamical normal modes using
parameter to be perturbed. Then, introducing small perturbatior!new”ght eigenvectors of the system together with the correspond-

and linearizing Eq. (6) around the steady sigteq ) feads toa N9 eigenvalues evaluated from the linear stability analysis. This
fransient Iinearized equation set: - - method is well known to modal analysis in the fields of vibration

and structural engineering [Wahed and Bishop, 1976; Fawzy and

M(a,p)Ag -~ q,pP)Ag ~E(g, p)Ap =0 ©) Bishop, 1977; Claeyssen, 1990]. Chen [1992] first explored the ap-
plication of modal analysis in the coating flow system. It has been
suggested from his results that modal analysis is a very attractive
alternative when stability has already been analyzed, because a large
system can be effectively reduced by only a small number of the
leading eigenmodes. A brief description of modal analysis follows.

Modal analysis finds the complex response of the inverse of the
complex matrix(icwM —J) ™ as a linear combination of the matrix
Aqg =Ckexp( ict) ®) products of the right and left eigenvectors, by using the well known
spectral decomposition theorem [Saad, 1992]. So the response is
constructed as follows:

N

k=(iaM ) F=3 2y 12)

1

where J=(0R/0q) o is Jacobian matrix at the steady shdts,
—(0R/0q) o,p, MASS matrix, and=(0R/dp),,,, forcing vector of the
residuals to the parameter p evaluated at steady state.

A particular solution of Eq. (7) responds to a steady oscillation
with the same frequency as a sinusoidal disturbancé\g=/exp
(iax)) as follows:

wherew is the frequency of the ongoing disturbantée com-
plex value of the amplitude of the imposed disturbancé; ek
the complex value representing the amplitude and phase lag of solu-
tions relative to the imposed disturbance.

Substituting Eq. (8) into Eq. (7) leads to the linear complex equa- ) ) .
tion wherep and) are the normalized right and left eigenvectors cor-

responding to same eigenvaldeand Nisthe sizedf & ma-
(M —Jk=E ©) trix.
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The total response &f  can be divided into two contributigns: k

the principal response from the leading modes from 1, tand : PT:I' "qt'id: ;
kg the response from remaining modes frogINto N, so-called, 8—0_, £=0.1 i
“background” response. De=0.01, =20 i |
k=(iwM -J)'E= S v Q¥ '
k=) Bk, -y S B 5 SLE a3
Giw-A " i Ehin-A

In generalky is very small compared g, so the total response is
approximated to the response by the leading modes. However,
background term has been also considered here by simply appro;
mating at zero frequency [Eq. (14)].

NP
kK, =k, +zl%ﬂuf (14)
2

1
wherek,=-J"F .
4, lterative Method (GMRES)
As in the case of the direct method, the doubled matrix to solve
the linear system is also considered here. 10™

Amplitude of the take-up area

10° 10' 10°
Qk=g =4 ~OMREE Fh 1s) Frequency, o

levl -J Mim(k)0 000 _ _ o _
Fig. 1. Amplitudes of spinline cross-sectional area at the take-up

The iterative method constructs the response on a m-th Krylov sub- for isothermal PTT spinning where various disturbances
space of the doubled matri@ defined by are introduced in 1: spinneret area, 2: take-up velocity, 3:

extrusion velocity.
U, ={u, Qu,,....Q" "} (16)

whereu,=sy/|lsilb, s=f ~Qk o, andk , is the initial guess of the so-  fluids are presented in Jung et al. [2002]. Some of the interesting
lution. This method approximates the response as a linear combjesults are introduced here, because the main focus of this study
nation of basis vectors that span the Krylov subspace. develops useful numerical methods for solving frequency response

As a useful one among the iterative methods, the generalized mirnd determines the stability of the system by using these frequency
imal residual method (GMRES) developed by Saad and Schultgjata.

[1986] is implemented to solve the doubled linear system. The solu- Fig. 1 shows predicted amplitudes or gains of the spinline cross-
tion is expressed as a linear combination of the Krylov subspaceectional area at the take-up as a function of the frequency to sinu-
basis vectors, soidal perturbations in spinneret cross-sectional area, take-up veloc-

K=k, +U.y 17) ity, and extrusion velocity. In all cases, amplitudes of the solution

T give unity value in the low-frequency region, because the sinusoi-
wherey is a vector of size m, the Krylov subspace dimension. Thiglal change of flow rate directly alters the final spinline cross-sec-
method minimizes the residual norm over all vectors in Eq. (17).tional area. In contrast, the change of other disturbances, not influ-
Residuals €f —Qk ) of Eqg. (15) can be expressed into the follow- encing the flow rate, such as viscosity, elasticity, and cooling con-
ing form, combined with Egs. (16) and (17) ditions, results in almost zero amplitude at the low-frequency region

[Jung et al., 2002].

%78 "QVY ZA Ui Hoy =Una (B ~Hy) (18) One interesting thing is that the changes in sensitivity, i.e., am-
where=|s), € is unitvector, antH,, the (m+1)xm augmented plitudes from frequency response, are well connected to some in-
Hessenberg matrix. Since the column vectotd,pf are orthogo-  formation from linear stability analysis. Amplitudes shown in Fig. 1
nal, then GMRES algorithm seeis to mlnlﬂﬁe Hmy“ . (A have resonant peaks along the frequency domain, closely related to
more detailed algorithm of this method is well described in Saadhe wave characteristics of the hyperbolic systems [Friedly, 1972].
[1996].) Also, the performance of this method is effectively improved In this case, frequencies at resonance peaks are exactly the same as

with a pre-conditioning step [Gates, 1999]. the imaginary parts of successive leading eigenmodes from linear
stability analysis.
RESULTS AND DISCUSSION Process sensitivity is directly scrutinized with the amplitude G
The more sensitive a process is, the higher the peaks of amplitude
1. Sensitivity Results to sinusoidal disturbances. Therefore, it is possible to systematically

Frequency response of the spinline cross-sectional area at takanalyze the effect of several process conditions such as cooling,
up to several ongoing disturbances was evaluated by several algaiscoelasticity, inertial force, etc. on the sensitivity of the system
rithms outlined above. Nodal points (np) by finite difference along[Jung et al., 2002)].
the whole spinline are 401, guaranteeing acceptable accuracy. Mog Comparison of the Performance of Several Numerical Al-
detailed explanations about sensitivity results of PTT viscoelastiqgorithms
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Direct solving the full doubled matrix of Eq. (11) as a direct meth-
od will be tedious and time-consuming if unknowns or nodal points
along the spinline are enormously increased. More efficient numeri
cal technigues should be devised to solve the large-sized frequen:
response equations. It has been found that the two-shot method, whi
solves the frequency response of our one-dimensional system t
integrating the linearized equations over the spinline length with
only two initial guesses, is superior to all other methods considere:
here. The performance of each method is presented in Table 1 a
explained later.

Fig. 2 portrays the frequency response results by modal analys
in Newtonian spinning. Over 0.45 N principal leading modes are
required to closely agree with the exact solution. Interestingly, ever

Table 1. The performance test of the direct, two-shot, modal,
and iterative methods

Computation Residuals

Methods time (s) [[(iwM — J)k—El

w=28 w=80 w=28 w=80
Direct 132 132 9.5%10° 8.18x10°®
Two-shot <1 <1
Modal: N,=0.05N  1-2 1-2 1.03 10.38
0.2N 1.04 9.77
0.35N 0.52 9.46
045N 0.13 1.02
055N 1.34107 8.78x10°®
Iterative: m=5 50 51 17.87 500.84
20 65 73 8.8%10° 31.99
40 60 83 6.0&10° 141
50 65 92 5.4%10° 7.63x10°

Amplitude of the take-up area

0.4N "~ 0.45N
01F 0.55N
0 20 40 60 80 100

Frequency, o

Fig. 2. The effect of the number of the leading modes (Non the
sensitivity in the modal analysis when a disturbance is intro-
duced at the take-up velocity (De=0, £-=0.05, and r=25).

rocess Using Frequency Response Method 23

Amplitude of the take-up area

40 60
Frequency, o

Fig. 3. The effect of the Krylov subspace dimension (m) on the sen-
sitivity in the iterative method (GMRES) when a distur-
bance is introduced at the take-up velocity (De=0,,&0.05,
and r=25).

with the small number of leading modes the first peak or the most

dangerous one can be exactly predicted. Solving by this method is
much faster than the direct method, because a leading part of all
eigenmodes (N) are only used. The response by this method might
depend on the forcing term as well as the number of leading modes.

The results in Newtonian spinning by iterative method (precon-
ditoned GMRES) show that the frequency response is well esti-
mated with around 50 Krylov subspace dimensions, bringing forth
faster computation time than the direct method (Fig. 3). Also, the
most dangerous peak in the low frequency region has been exactly
obtained with only a small number of Krylov subspace dimensions,
as mentioned in the case of modal analysis.

Table 1 compares the performance of the direct method, two-
shot method, modal analysis, and iterative method at only two fre-
guenciesq=28 and 80, respectively. The time needed by the direct
method is virtually the same at all frequencies. The two-shot meth-
od is the fastest among all methods, just requiring a few seconds to
draw the whole frequency response of the spinline cross-sectional
area at the take-up. The performance of the modal analysis with
fast computation time is comparable to the two-shot method. The
computation time for extracting the leading left/right eigenvectors
from all eigenmodes and calculating the frequency response of the
spinline cross-sectional area at the take-up only is recorded in Table
1 (In other words, computation time for obtaining the eigenmodes
from linear stability analysis is not included. There is no need to
calculate eigenmodes at every frequency, because these are input
data before starting the frequency response calculation.). In the iter-
ative method, the total time includes the time spent on the precon-
ditioning operation in addition to the GMRES algorithm. This meth-
od also needs shorter computation time than the direct method. Be-
cause the preconditioning step is only conducted before starting the
frequency response calculation, actual computation time at every

Korean J. Chem. Eng.(Vol. 21, No. 1)
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frequency is shorter than that given in Table 1.

Gates [1999].

From the performance test among the methods considered in thi Stability Results by Frequency Response
study, it has been confirmed that the two-shot method is best suited As suggested in Kase and Araki [1982], frequency response has
to solve the frequency response of one-dimensional systems sudieen evidently applied to determine the stability of a simple New-
as spinning, film casting process, and simplified curtain coating flowtonian spinning system. They devised the spinning system as a feed-
[Jung and Scriven, 2001]. (Performance: Two shot>modal analysisdack loop controlled by the spinline tension acting on the spinline
iterative method>direct method.) Also, modal analysis and itera{Fig. 6 in their article) and derived the transfer function equation
tive method are more powerful tools than direct method. In particrelating the cross-sectional area at the take-up to any disturbances.
ular, using these two methods will be notably favorable in multi- It has been demonstrated that the spinning system is unstable when
dimensional systems with large sparse matrix, as demonstrated the vector locus of the transfer function.&onnecting spinline

a T T T T T
® PTT liquid: €=0, £=0.1, De=0.008
1 2 :
D e Stable
iz —— Unstable
08 28
c ob X”) ...... |
/1r=23 T
I .
0 1 2
Re (G, )
(b) T
e W Stable
1F — Unstable -
o
0 b
£ /
r=65
4 | PTTliquid: =0, £=0.1, De=0.008 .

0 1 2
Re (GV,F)
Fig. 4. Vector loci of transfer function between spinline tension and

take-up velocity of a PTT liquid in (&) low drawdown ratio
and (b) high drawdown ratio regions.
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tension and take-up velocity, “encircles” the origin of the complex
plane in Nyquist plot. The above stability criterion has been extended
to the viscoelastic system of our study. Furthermore, our method is
much simpler and faster than Kase’s in that we applied one of the
frequency response methods suggested here (i.e., two-shot method
for this study) to obtain the transfer function,.Gvhereas they
used the transient numerical simulation. Fig. 4 shaydd@i for
determining the stability of a PTT spinning system. The stable and
unstable conditions have been exactly expected by inspecting wheth-
er the vector locus of Gincludes the origin of the complex plane

or not. Whole stability windows can be drawn from this method as
shown in Fig. 5, giving the same results as those by the linear sta-
bility theory.

CONCLUSION

The sensitivity and stability of the viscoelastic spinning system
to several sinusoidal disturbances have been investigated by using
the frequency response method. Due to the hyperbolic characteris-
tics of the system, amplitudes of the spinline cross-sectional area at
the take-up show resonant peaks along the whole frequency domain,
where the frequencies at local maxima of amplitudes are equal to
the imaginary parts of the leading eigenmodes. To effectively solve

3

107 ¢ .
. \ . :
1 10 0
2 20 0.1
- 300150
i’ 4 0.015 0.5
= 3
*é 102 5 0.015 1
c
?, Unstable
o
=
o
Q 4—_
Stable 5
10' b \
10" 10° 10° 10"
Deborah number (De)
Fig. 5. Neutral stability curves of PTT fluids in isothermal spin-
ning.
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the frequency response equation system, alternative methods hage : liquid density
been developed and compared. Interestingly, in the cases examined, : spinline axial stress
the two-shot method proved far more efficient than modal analysis usr : dimensionless spinline axial stress

ing the eigenfunctions or solving the matrix problem from the entireco  : frequency

spinline length by a direct method or an iterative method (GMRES)£  : material parameter of PTT fluids

The two-shot method can also be implemented to analyze the seny  : normalized left eigenvector

sitivity of other one-dimensional systems such as sheet casting anfl  : complex value of the amplitude of the imposed disturbance
simplified curtain coating. Modal analysis and iterative method are

also attractive tools in solving the frequency response, especiallsubscripts

for multi-dimensional systems with large sparse matrix. Also, theO : values at the spinneret
stability of the system using frequency response data is succesk- :values at the take-up
fully determined by revamping the stability criterion from the feed- s : values at steady state

back control system, as devised in Kase and Araki [1982].
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